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Abstract

We previously reported that streptozotocin (STZ)-induced diabetic mice exhibited depressive-like behavior in the tail suspension test. In this

study, we examined the involvement of benzodiazepine receptor functions in this diabetes-induced depressive-like behavior in mice. STZ-induced

diabetes significantly increased the duration of immobility without affecting spontaneous locomotor activity. This increase was dose-dependently

and significantly suppressed by a benzodiazepine receptor antagonist, flumazenil (0.1–1 mg/kg, i.v.). However, flumazenil (0.1–1 mg/kg, i.v.) did

not affect the duration of immobility in non-diabetic mice. Furthermore, flumazenil (1 mg/kg, i.v.) had no significant effect on spontaneous

locomotor activity in either non-diabetic or diabetic mice. The benzodiazepine receptor inverse agonist methyl h-carboline-3-carboxylate (h-
CCM; 0.03–0.3 mg/kg, i.v.) dose-dependently and significantly increased the duration of immobility in non-diabetic mice, but not in diabetic

mice. h-CCM (0.3 mg/kg, i.v.) significantly suppressed spontaneous locomotor activity in non-diabetic mice, but not in diabetic mice. These

results indicate that diabetic mice may have enhanced negative allosteric modulation by benzodiazepine receptor ligands, such as diazepam

binding inhibitors, under stressful conditions, but not free-moving conditions, and this abnormal function of benzodiazepine receptors may cause,

at least in part, the expression of depressive-like behavior in diabetic mice.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It has been recognized that patients with diabetes have a

higher prevalence of depression than the general population

(Berlin et al., 1997; Peyrot and Rubin, 1997; Anderson et al.,

2001; Petrak et al., 2003). Diabetic patients with depression

also show poor glycemic control (Lustman, 1988; Lin et al.,

2004). In addition, psychological troubles are regarded as risk

factors for the future development of diabetes-related compli-

cations (Lustman et al., 2000; de Groot et al., 2001). However,

little information is available to resolve this problem. In

animal studies, streptozotocin (STZ)-treated rodents are often

used as an animal model of type 1 diabetes because STZ

induces pancreatic h-cell death and hyperglycemia associated

with the decreased insulin secretion (Arison et al., 1967;

Hohenegger and Rudas, 1971; Tarui et al., 1987). STZ-

induced diabetic rodents show changes in the central nervous
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system as indicated by neurochemical, electrophysiological,

morphological and behavioral studies (Hilakivi-Clarke et al.,

1990; McCall, 1992; Biessels et al., 1996; Magarinos and

McEwen, 2000). We previously reported that STZ-induced

diabetic mice exhibited depressive-like behavior in the tail

suspension test (Kamei et al., 2003), which is often used to

screen putative antidepressants (Steru et al., 1985). However,

depressive-like behavior was not observed in mice in the early

stage of STZ-induced diabetes or in hyperglycemic mice

induced by glucose injection (Kamei et al., 2003). Since STZ

does not cross the blood–brain barrier and has an early

excretion rate (Schein, 1969; Karunanayake et al., 1974), we

have suggested that the depressive-like behavior in STZ-

induced diabetic mice is induced by the diabetic state rather

than by STZ itself.

We previously reported that psychological stress-induced

analgesia was greater in STZ-induced diabetic mice than in

non-diabetic mice (Kamei and Ohsawa, 2000). In addition, the

anxiety-like state in an unfamiliar environment was enhanced

in STZ-induced diabetic mice compared with non-diabetic
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mice (Kamei et al., 2001). Interestingly, these diabetes-induced

behavioral changes were transiently normalized by acute

injection of flumazenil, a selective benzodiazepine receptor

antagonist (Kamei and Ohsawa, 2000; Kamei et al., 2001).

Furthermore, benzodiazepine receptor inverse agonist-treated

non-diabetic mice showed behavioral changes similar to those

observed in STZ-induced diabetic mice (Kamei and Ohsawa,

2000; Kamei et al., 2001). Therefore, we have suggested that

the endogenous negative modulation of benzodiazepine recep-

tors may be enhanced in the STZ-induced diabetic state, and

this alteration may contribute, at least in part, to the behavioral

changes observed in STZ-induced diabetic mice.

It is well established that g-aminobutyric acid (GABA) and

benzodiazepine receptors play important roles in the patho-

genesis and therapeutics of depression (Petty et al., 1995; Shiah

and Yatham, 1998; Brambilla et al., 2003; Tunnicliff and

Malatynska, 2003). Clinical studies have demonstrated that

plasma and brain GABA levels in depressive subjects are

decreased (Petty et al., 1992; Sanacora et al., 1999). In

addition, GABA synthesizing enzyme glutamate decarboxylase

activity is significantly decreased in the postmortem brain of

patients with depression (Perry et al., 1977). It has also been

reported that the levels of diazepam binding inhibitor (DBI), an

endogenous substance that shows inverse agonistic properties

toward benzodiazepine receptors (Guidotti et al., 1978, 1983),

are increased in cerebrospinal fluid in patients with depression

(Barbaccia et al., 1986; Roy, 1991). These reports indicate that

GABAergic dysfunction may be closely related to the

pathogenesis of depression. Since the benzodiazepine anxio-

lytic alprazolam has therapeutic properties toward depression

(Petty et al., 1995), it has also been suggested that normali-

zation of GABAergic dysfunction and/or enhancement of

GABAergic neurotransmission may lead to the amelioration

of depressive symptoms.

Based on these reports, it is possible that the depressive-like

behavior in STZ-induced diabetic mice may be attributed to

GABAergic dysfunction associated with the abnormal function

of benzodiazepine receptors. To clarify this hypothesis, we

examined the involvement of benzodiazepine receptor function

in diabetes-induced depressive-like behavior in mice.

2. Materials and methods

2.1. Animals

Male ICR mice (Tokyo Laboratory Animals Science Co.,

Ltd., Tokyo), 4 weeks of age and weighing approximately 20 g

at the beginning of the experiments, were used. They were

housed 10 per cage and had free access to food and water. The

animal room was maintained at 24T1 -C and 55T5% humidity

with a 12-h light–dark cycle (light on at 08:00 h, light off at

20:00 h). Animals were rendered diabetic by an injection of

streptozotocin (200 mg/kg, i.v.) dissolved in citrate buffer at pH

4.5. Age-matched control mice were injected with the vehicle

alone. Blood glucose levels were determined using a glucose

analyzer (ANTSENSE II, Sankyo Co. Ltd., Tokyo, Japan). Six-

week-old mice (i.e. 14 days after the induction of diabetes)
with hyperglycemia (plasma glucose levels>400 mg/dl) were

defined as diabetic. This study was carried out in accordance

with the Guide for the Care and Use of Laboratory Animals as

adopted by the Committee on the Care and Use of Laboratory

Animals of Hoshi University, which is accredited by the

Ministry of Education, Science, Sports and Culture.

2.2. Drugs

The drugs used in this study were streptozotocin (Sigma

Chemical Co., St. Louis, MO, USA), flumazenil solution

(Anexate\; Yamanouchi Pharmaceutical Co., Tokyo, Japan),

and methyl h-carboline-3-carboxylate (h-CCM; Sigma). Flu-

mazenil was diluted with saline. h-CCM was dissolved in a

small volume of 0.1 M HCl, and then diluted with saline, and

the pH was adjusted to 4.0 with NaOH just prior to use. Each

drug was administered at a volume of 0.1 ml/10 g of body

weight.

2.3. Experimental procedures

2.3.1. Tail suspension test

The procedure was according to our previous report (Kamei

et al., 2003). The tail suspension apparatus consisted of a

white translucent plastic box (30�30�30 cm3) with a hook

in the middle of the ceiling from which to suspend the mouse.

Mice were suspended by the tail using adhesive Scotch tape

affixed to the hook which was connected to a strain gauge

(TAIL SUSPENSION AMP, Neuroscience Inc., Tokyo, Japan)

that picked up all movements of the mouse and transmitted

them to a central processing unit which calculated the total

duration of immobility and the strength of movements during

the 10 min of the test. Each mouse was suspended

individually. The movements of the mice were digitized and

processed by Super Scope II (GWI; Somerville, MA, USA).

The threshold level was set so as to exclude respiration

movement. The duration of immobility was defined as the

total amount of time that the animal showed no movement.

Flumazenil and h-CCM were injected i.v. 5 min before

testing. In the combination study, flumazenil was injected i.v.

just before i.v. treatment with h-CCM.

2.3.2. Spontaneous locomotor activity

Spontaneous locomotor activity of mice was measured by a

digital counter with an infrared sensor (NS-AS01, Neurosci-

ence Inc., Tokyo, Japan). The apparatus detects the movement

of animals based on released infrared rays associated with their

temperature, and records a digital count. A mouse was placed

in a transparent plastic cage (27�17�13 cm3), a transparent

plastic ceiling was installed, and an infrared sensor was placed

at the center of the ceiling. Mice were placed in the

measurement cage, and then recording was started. Total

activity counts were automatically recorded for 10 min, which

was the same as the measurement period in the tail suspension

test. Flumazenil and h-CCM were injected i.v. 5 min before

testing. In the combination study, flumazenil was injected i.v.

just before i.v. treatment with h-CCM.



Fig. 2. Effect of h-CCM on the duration of immobility in the tail suspension

test in non-diabetic and diabetic mice. **p <0.01 vs. vehicle-treated non-

diabetic mice (Student’s t-test). #p <0.05 vs. respective vehicle-treated group

(Dunnett’s test). Each column represents the meanTS.E.M. of 8–10 mice.
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2.4. Statistics

The data were expressed as meanTS.E.M. Significant

differences were determined by one-way and two-way analysis

of variance (ANOVA) for factorial comparisons and Dunnett’s

test for multiple comparisons. Student’s t-test or Aspin–

Welch’s t-test was used to evaluate differences between two

groups. P-values less than 0.05 were considered significant.

3. Results

3.1. Effect of flumazenil on the duration of immobility in the

tail suspension test in non-diabetic and diabetic mice

The duration of immobility was significantly longer in

diabetic than in non-diabetic mice (Fig. 1). Flumazenil (0.1–1

mg/kg, i.v.) dose-dependently and significantly suppressed the

prolonged duration of immobility in diabetic mice to the same

levels as observed in non-diabetic mice [F(3,32)=5.375,

p <0.01] (Fig. 1). However, flumazenil (0.1–1 mg/kg, i.v.)

had no significant effect on the duration of immobility in non-

diabetic mice [F(3,30)=0.143, p =0.9332] (Fig. 1). Two-way

ANOVA revealed that the duration of immobility was

significantly affected by diabetes [F(1,62)=7.080, p <0.01]

and diabetes�drug interaction [F(3,62)=2.958, p <0.05].

3.2. Effect of b-CCM on the duration of immobility in the tail

suspension test in non-diabetic and diabetic mice

h-CCM (0.03–0.3 mg/kg, i.v.) dose-dependently and

significantly increased the duration of immobility in non-

diabetic mice to the same levels as observed in diabetic mice

[F(3,34)=3.382, p <0.05] (Fig. 2). However, h-CCM (0.03–

0.3 mg/kg, i.v.) had no significant effect on the duration of

immobility in diabetic mice [F(3,32)=0.948, p =0.4292] (Fig.

2). Two-way ANOVA revealed that the duration of immobility
Fig. 1. Effect of flumazenil on the duration of immobility in the tail suspension

test in non-diabetic and diabetic mice. Each column represents the mean-

TS.E.M. of 8–10 mice. ***p <0.001 vs. saline-treated non-diabetic mice

(Student’s t-test). #p <0.05 and ##p <0.01 vs. respective saline-treated group

(Dunnett’s test).
was significantly affected by diabetes [F(1,66)=10.116,

p <0.01], but not diabetes�drug interaction [F(3,66)=1.209,

p =0.313].

The h-CCM (0.3 mg/kg, i.v.)-induced marked prolongation

of immobility time in non-diabetic mice was dose-dependently

and significantly antagonized by the pretreatment with fluma-

zenil (0.03–0.3 mg/kg, i.v.) [F(3,33)=5.470, p <0.01] (Fig. 3).

3.3. Effects of flumazenil and b-CCM on spontaneous

locomotor activity in non-diabetic and diabetic mice

There was no significant difference in the spontaneous

locomotor activity for 10 min between non-diabetic and
Fig. 3. Effect of flumazenil on the h-CCM-induced prolongation of immobility

in non-diabetic mice. **p <0.01 vs. saline plus vehicle-treated non-diabetic

mice (Student’s t-test). ##p <0.01 vs. saline plus h-CCM-treated non-diabetic

mice (Dunnett’s test). Each column represents the meanTS.E.M. of 8–10 mice.



Table 1

Effects of flumazenil and h-CCM on spontaneous locomotor activity in non-

diabetic and diabetic mice

Non-diabetic mice Diabetic mice

Saline (i.v.) 374.4T18.7 358.4T24.7

Flumazenil (1 mg/kg, i.v.) 413.6T12.4 373.8T13.8
Vehicle (i.v.) 373.5T22.7 331.3T29.8

h-CCM (0.3 mg/kg, i.v.) 165.9T52.4** 265.8T32.7

Flumazenil (0.3 mg/kg, i.v.)+

h-CCM (0.3 mg/kg, i.v.)

372.5T13.0## Not determined

Each value represents the meanTS.E.M. of 10 mice.

** p <0.01 vs. respective vehicle-treated mice (Aspin–Welch’s t-test).
## p <0.01 vs. h-CCM-treated non-diabetic mice (Aspin–Welch’s t-test).
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diabetic mice (Table 1). Flumazenil (1 mg/kg, i.v.) had no

significant effect on spontaneous locomotor activity in both

non-diabetic and diabetic mice (Table 1). h-CCM (0.3 mg/kg,

i.v.) significantly reduced spontaneous locomotor activity in

non-diabetic mice, but not in diabetic mice (Table 1). Two-way

ANOVA revealed that spontaneous locomotor activity was

significantly affected by h-CCM [F(1,36)=14.299, p <0.001],

but not by diabetes [F(1,36)=0.638, p =0.4296] or diabetes� -

drug interaction [F(1,36)=3.871, p =0.0569]. Pretreatment

with flumazenil (0.3 mg/kg, i.v.) completely antagonized the

h-CCM (0.3 mg/kg, i.v.)-induced reduction in locomotor

activity in non-diabetic mice (Table 1).

4. Discussion

In the present study, diabetic mice showed a prolonged

duration of immobility without any difference in spontaneous

locomotor activity. This result is consistent with our previous

reports (Kamei et al., 2003; Miyata et al., 2004) and this altered

behavior was termed depressive-like behavior. We also

reported that several antidepressants such as fluoxetine,

fluvoxamine and desipramine were less active in diabetic mice

in the tail suspension test (Kamei et al., 2003; Miyata et al.,

2004). However, the mechanism(s) was still unclear why

diabetic mice exhibited the depressive-like behavior. In this

study, the depressive-like behavior in diabetic mice was

suppressed by treatment with flumazenil. However, this

treatment did not affect the duration of immobility in non-

diabetic mice. We previously reported that the doses of

flumazenil used in this study did not affect the exploratory

behavior in non-diabetic mice in the hole-board test (Kamei et

al., 2001). Therefore, it is likely that flumazenil at this dose

range has the antagonistic property. We also demonstrated that

h-CCM produced depressive-like behavior in non-diabetic

mice, and this effect was antagonized by flumazenil. Therefore,

we can speculate that the endogenous negative modulation of

benzodiazepine receptors may be enhanced in diabetic mice

and this alteration may elevate the depressive-like state in mice

in the tail suspension test. This idea is supported by the

previous report indicating that the GABAA receptor antagonist

bicuculline-induced seizure was sensitized by diabetes (Tutka

et al., 1998). Therefore, it is likely that flumazenil blocked the

enhanced negative allosteric modulation of benzodiazepine

receptors and reduced the duration of immobility in diabetic
mice. We previously observed that the benzodiazepine receptor

agonist diazepam also suppressed depressive-like behavior in

diabetic mice (Kamei et al., 2003). Therefore, it can be

speculated that diazepam counterbalanced the enhanced neg-

ative allosteric modulation of benzodiazepine receptors and

reduced the duration of immobility in diabetic mice. Based on

these findings, it is possible that the attenuation of negative

allosteric modulation of benzodiazepine receptors causes the

reduction of immobility in diabetic mice.

Several h-carboline derivatives have anxiogenic-like prop-

erties in the Vogel punished drinking test (Corda et al., 1983),

the potentiated startle test (Hijzen and Slangen, 1989), the

light–dark test (Belzung et al., 1987), the elevated plus-maze

test (Pellow and File, 1986) and the hole-board test (File et al.,

1985; Kamei et al., 2001) in rodents. In addition, h-carbolines
reduce social interactive and aggressive behaviors but increase

avoidance behavior in rodents tested in pairs (File et al., 1985;

Beck and Cooper, 1986). In this study, we observed that

treatment with h-CCM increased the duration of immobility

and decreased spontaneous locomotor activity in non-diabetic

mice. h-CCM at this dose range does not elicit convulsion in

either non-diabetic or diabetic mice (Ohsawa and Kamei,

1999). However, we observed in this study that some non-

diabetic mice demonstrated slight freezing behavior after the

injection of h-CCM (0.3 mg/kg, i.v.) (data not shown). It has

been reported that h-carbolines elicit fear-related freezing in

primates at a dose higher than that which elicits the suppression

of exploratory behavior (Kalin et al., 1992). Therefore, h-
CCM-induced depressive-like behavior in non-diabetic mice is

partly associated with hypolocomotion including fear-related

freezing behavior. In contrast to the result in non-diabetic mice,

h-CCM had less of an effect on the duration of immobility and

spontaneous locomotor activity in diabetic mice. We previously

reported that a higher dose of h-CCM was needed to induce

convulsion in diabetic than in non-diabetic mice (Ohsawa and

Kamei, 1999). Furthermore, the anxiogenic-like effect of h-
CCM is also less in diabetic than in non-diabetic mice (Kamei

et al., 2001). Therefore, the enhanced endogenous negative

modulation of benzodiazepine receptors in diabetic mice may

be independent of the sensitivity of benzodiazepine receptors.

Interestingly, flumazenil had no effect on spontaneous loco-

motor activity in both non-diabetic and diabetic mice. This

result strongly indicates that the enhanced endogenous negative

modulation of benzodiazepine receptors is not expressed under

free-moving conditions in diabetic mice. In our previous

studies, a similar abnormal function of benzodiazepine

receptors in diabetic mice was detected after psychological

stress treatment and in an unfamiliar environment (Kamei and

Ohsawa, 2000; Kamei et al., 2001). Based on these findings,

we suggest that the enhanced endogenous negative modulation

of benzodiazepine receptors in diabetic mice may be induced

by exposure to stress.

Diazepam binding inhibitor (DBI), an 86-amino-acid

polypeptide, is an endogenous substance that shows inverse

agonistic properties toward benzodiazepine receptors in the

human and rat brain (Guidotti et al., 1978, 1983). Proteolytic

cleavage of DBI generates several biologically active frag-
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ments that also show inverse agonistic properties toward

benzodiazepine receptors (Ferrero et al., 1986; De Mateos-

Verchere et al., 1998). It has been reported that the release of

DBI is stimulated by exposure to stress (Ferrarese et al., 1991).

Therefore, it can be speculated that the secretion or cleavage of

DBI under stressful conditions may be increased in diabetic

mice. This speculation may explain our present and previous

findings (Kamei and Ohsawa, 2000; Kamei et al., 2001). It has

been reported that octadecaneuropeptide, the active fragment of

DBI, displaces h-CCM (Ferrero et al., 1986). Therefore, it is

possible that h-CCM did not induce further increase in duration

of immobility in diabetic mice since increased endogenous

ligands such as DBI and its active fragments under stressful

condition may competitively block the effect of h-CCM in

diabetic mice.

It is well established that GABAergic dysfunction including

elevated DBI levels is an important factor in the pathogenesis

of depression (Barbaccia et al., 1986; Roy, 1991; Petty et al.,

1995; Shiah and Yatham, 1998; Brambilla et al., 2003;

Tunnicliff and Malatynska, 2003). We have demonstrated that

the hypnotic activities of ethanol and pentobarbital were

markedly attenuated in diabetic mice (Ohsawa and Kamei,

1997; Kamei et al., 2005). Since pentobarbital and ethanol

exert their hypnotic actions by interacting with GABAA

receptors (Schulz and Macdonald, 1981; Hunt, 1983), we

speculated that GABAergic function may be attenuated by

diabetes. Dong et al. (1999) reported that DBI and its active

fragment octadecaneuropeptide decreased the hypnotic effect

of pentobarbital. Therefore, diabetic mice may have GABAer-

gic dysfunction associated with the abnormal function of

benzodiazepine receptors and this alteration may cause, at least

in part, the expression of behavioral changes such as

depressive-like behavior. Although further studies are required

to clarify the relationship between GABAergic dysfunction and

the pathophysiology of depression in diabetes, it is possible

that the abnormal function of benzodiazepine receptors may be

partly involved in the higher incidence of depression in

diabetes.

In conclusion, we suggest that the depressive-like behavior

in the tail suspension test in STZ-induced diabetic mice may be

associated, at least in part, with the abnormal function of

benzodiazepine receptors.
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